

Integrating Self-Supervised Speech Model with Pseudo Word-Level Targets from Visually-Grounded Speech Model

Hung-Chieh Fang 1* Nai-Xuan Ye 1* Yi-Jen Shih 1,2 Puyuan Peng 2 Hsuan-Fu Wang ¹ Layne Berry ² Hung-yi Lee ¹ David Harwath ²

¹National Taiwan University, Taiwan ²The University of Texas at Austin, USA

Motivation & Background

Motivation

- HuBERT [1] is trained with frame-level units as targets, limiting their performance in general spoken language understanding (SLU) tasks.
- Previous approaches use ASR + NLU (traditional) or end-to-end NLU [2] frameworks to alleviate the issue, but these require expensive paired transcripts.

Background: VG-HuBERT [3]

- It is a visually-grounded speech (VGS) model that reaches state-of-the-art performance in word segmentation tasks.
- It is trained with image-speech pairs, eliminating the dependence on paired transcripts.

Can we enrich the semantic information of self-supervised speech models by incorporating word-level units without the need for paired transcripts?

Methodology

Key Idea

- Utilize word boundaries from VG-HuBERT [3] to provide word-level supervision without paired speech-text data.
- Incorporate frame-level and word-level targets to further enhance semantic information.

Method

- Aggregate representations within word boundaries from VG-HuBERT [3] to generate pseudo word-level targets.
- Single PW-HuBERT fine-tunes HuBERT with pseudo word-level targets.
- Hierarchical PW-HuBERT employs frame-level targets in shallower layers and pseudo word-level targets in deeper layers, based on the insight from [4] that higher-level information resides in deeper layers.

Results

Table 1. HuBERT₁₄ is a 14-layer version of HuBERT with the same number of parameters as PW-HuBERT.

Dataset	SLUE		SLUE Phase-2	SNIPS		ZeroSpeech	
	SA	NER	NEL	SF	IC	Lib.	Syn.
Metric	F1 ↑	F1 / Label F1 ↑	Frame F1 / Word F1 \uparrow	F1	- 🕇	Simila	arity
HuBERT	45.27	51.6 / 64.8	57.54 / 61.14	88.16	98.57	5.71	6.79
$HuBERT_{14}$	44.54	51 / 66.8	58.43 / 61.84	88.18	<u>98.71</u>	5.11	6.63
VG-HuBERT	45.1	41.4 / 52.3	47.11 / 51.52	84.98	98.42	8.42 [†]	9.97^{\dagger}
Single PW-HuBERT	48.7	<u>52.5</u> / <u>67.3</u>	<u>59.44</u> / <u>63.51</u>	88.32	98.44	5.16	6.88
Hierarchical PW-HuBERT	49.06	55.3 / 68.6	61.28 / 65.55	88.25	98.85	<u>6.55</u>	9.02

Observation

- Both Single and Hierarchical PW-HuBERT outperform baselines on general SLU tasks, showing the benefits of word-level targets.
- VG-HuBERT shows improvement in ZeroSpeech due to its similar training setup[†], but it adversely affects general SLU tasks.

A vabitaatuva	HuBERT	SLUE		SLUE 2 SNIPS		
Architecture	Targets	SA	NER	NEL	SF	
Hierarchical	X	44.94	53.6/67.9	59.4	88.4	
		49.06	55.3/68.6	61.3	88.3	

Analysis

The Effect of Frame-Level Targets

- Hierarchical PW-HuBERT with frame-level targets consistently outperforms its counterpart without.
- Exploiting the synergy between frame-level and word-level targets further enhances training guidance.

Conclusion

- Propose a framework that incorporates pseudo word-level targets from a VGS model into training without the necessity of paired speech-text data.
- Demonstrate the advantage of jointly training with frame-level and word-level targets.

References

- Wei-Ning Hsu et al. "Hubert: Self-supervised speech representation learning by masked prediction of hidden units". In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 29 (2021), pp. 3451–3460.
- Siddhant Arora et al. "Espnet-slu: Advancing spoken language understanding through espnet". In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2022, pp. 7167–7171.
- Puyuan Peng and David Harwath. "Word Discovery in Visually Grounded, Self-Supervised Speech Models". In: Interspeech. 2022.
- Ankita Pasad, Ju-Chieh Chou, and Karen Livescu. "Layer-wise analysis of a self-supervised speech representation model". In: 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE. 2021, pp. 914-921.