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Abstract

Federated Unsupervised Learning (FUL) aims to learn ex-
pressive representations in federated and self-supervised
settings. The quality of representations learned in FUL is
usually determined by uniformity, a measure of how uni-
formly representations are distributed in the embedding
space. However, existing solutions perform well in achiev-
ing intra-client (local) uniformity for local models while
failing to achieve inter-client (global) uniformity after ag-
gregation due to non-IID data distributions and the decen-
tralized nature of FUL. To address this issue, we propose
Soft Separation and Distillation (SSD), a novel approach
that preserves inter-client uniformity by encouraging client
representations to spread toward different directions. This
design reduces interference during client model aggrega-
tion, thereby improving global uniformity while preserving
local representation expressiveness. We further enhance
this effect by introducing a projector distillation module
to address the discrepancy between loss optimization and
representation quality. We evaluate SSD in both cross-silo
and cross-device federated settings, demonstrating consis-
tent improvements in representation quality and task perfor-
mance across various training scenarios. Our results high-
light the importance of inter-client uniformity in FUL and
establish SSD as an effective solution to this challenge.

1. Introduction

Deep learning has achieved remarkable success across a
wide spectrum of applications, from computer vision and
natural language processing to speech recognition and re-
inforcement learning [1, 11, 18, 29]. This progress can
be largely attributed to the availability of massive labeled
datasets, particularly since the emergence of ImageNet [5],
which has enabled the training of increasingly powerful
neural networks. However, the practical deployment of
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Figure 1. Comparison with state-of-the-art methods. Our SSD
achieves the highest performance (marked in brackets) and the
best representation quality, measured by uniformity [31] and ef-
fective rank [27], among existing FUL approaches.

deep learning in real-world scenarios faces two critical chal-
lenges. First, data in real-world applications is often non-
Independent and Identically Distributed (non-IID) and can-
not be freely shared due to privacy concerns, regulatory
restrictions, or proprietary constraints. This data is typi-
cally generated across diverse sources, including user de-
vices, healthcare institutions, and industrial settings. The
distributed nature and sharing limitations of such data make
centralized training approaches infeasible, leading to the de-
velopment of Federated Learning (FL) [15, 20, 24] as a
privacy-preserving distributed learning paradigm. Second,
a vast proportion of available data remains unlabeled, neces-
sitating effective methods for unsupervised representation
learning [2, 3, 8, 12]. These methods aim to learn mean-



ingful feature representations without relying on explicit la-
bels, enabling models to capture underlying data structures
and semantic relationships.

Federated Unsupervised Learning (FUL) emerges at the
intersection of these two challenges, aiming to learn ex-
pressive representations in settings where data is both dis-
tributed and unlabeled. In FUL, the quality of learned
representations is critically determined by two properties:
alignment and uniformity [31]. Alignment measures how
close similar data points are positioned in the representa-
tion space, relating to the model’s ability to group seman-
tically similar objects. Uniformity quantifies how evenly
representations are distributed across the unit hypersphere,
essentially measuring the entropy of the representation dis-
tribution. High uniformity prevents representation collapse
and ensures that the learned features effectively utilize the
available embedding dimensions.

However, existing FUL methods face a significant chal-
lenge that remains inadequately addressed. While cur-
rent approaches successfully achieve good intra-client (lo-
cal) uniformity for representations within each client, they
struggle to maintain inter-client (global) uniformity after
model aggregation. This limitation stems from two key
factors: (1) the non-IID distribution of data across clients,
which naturally leads to divergent updates, and (2) the de-
centralized nature of FL, where the server lacks direct ac-
cess to raw data, preventing the application of explicit uni-
formity constraints across clients.

Most existing approaches have focused primarily on two
aspects of this challenge. One line of research builds upon
the framework established by FedProx [21], introducing
proximal terms to constrain local updates within a bounded
neighborhood of the global model. For instance, FedU [36]
and FedEMA [37] dynamically adjust aggregation weights
based on inter-client model divergence, while FedX [10] in-
corporates a global relational loss to align pairwise sample
relationships across clients. These methods aim to main-
tain global model consistency but do not explicitly address
representation uniformity.

Another research direction tackles the issue of dimen-
sional collapse [14] caused by lower uniformity in local rep-
resentations. FedDecorr [28] demonstrates that embeddings
of local clients are often less uniformly distributed and
mitigates this issue by decorrelating local features. Simi-
larly, FedU2 [22] regularizes local updates to approximate a
spherical Gaussian distribution, encouraging isotropic fea-
ture spaces. While these approaches enhance local unifor-
mity, the improvements at the client level do not inherently
translate to better global uniformity during model aggrega-
tion. This leads to a crucial question:

How can we effectively improve inter-client uniformity in
Federated Unsupervised Learning?

To address this challenge, we propose Soft Separation
and Distillation (SSD), a novel method that enhances inter-
client uniformity without compromising local representa-
tion expressiveness. Our approach employs a dimension-
scaled regularization strategy that softly separates each
client’s feature space, encouraging client representations to
spread toward different directions. As illustrated in Figure
2, this technique reduces interference during client model
aggregation, thereby improving global uniformity without
imposing rigid boundaries that could distort the underlying
feature distributions.

Furthermore, we empirically observe that the regular-
ization effect of SSD may not always effectively transfer
from loss optimization to the representation space due to
the presence of a projector between the loss function and
the encoder. While removing the projector might seem like
a straightforward solution, doing so often degrades perfor-
mance because the projector plays a crucial role in sepa-
rating optimization objectives from feature representations
[2, 9, 32]. To bridge this gap, we introduce a projector
distillation module that minimizes the KL divergence be-
tween representations and embeddings, effectively encour-
aging the encoder to internalize the learned structure while
preserving the projector’s role in loss optimization.

We evaluate SSD across diverse federated learning sce-
narios, including cross-silo (few clients with large datasets)
and cross-device (many clients with small datasets) settings.
Our experiments span both in-distribution tasks and out-of-
distribution (OOD) datasets to assess generalizability. Re-
sults demonstrate that SSD consistently outperforms exist-
ing methods in both downstream task performance (mea-
sured via linear probing and fine-tuning accuracy) and rep-
resentation quality (quantified using effective rank [7] and
uniformity [3 1] metrics).

Our main contributions are threefold:

* We identify and formalize the challenge of inter-client
uniformity in FUL, establishing it as a critical direction
for decentralized unsupervised representation learning.

* We propose Soft Separation and Distillation (SSD), a
simple yet effective framework that addresses inter-client
uniformity without additional communication overhead
or compromising privacy.

* We conduct extensive experiments across varied FL set-
tings and tasks, confirming SSD’s superiority over base-
line methods in both performance and robustness.

2. Preliminaries

Federated unsupervised learning (FUL) is a learning
paradigm in which multiple clients collaboratively train a
model without sharing new raw data, and where the lo-
cal datasets contain unlabeled data. The goal is to learn a
global representation that generalizes across all participat-
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Figure 2. Illustration of Intra-Client and Inter-Client Uniformity with Soft Separation. Intra-client uniformity ensures that represen-
tations within each client are well-distributed, while inter-client uniformity promotes global representation consistency across clients. Our
proposed Soft Separation method encourages each client’s representations to spread in distinct directions, mitigating interference during

model aggregation and improving global uniformity.

ing clients. Consider a federated learning system with K
local clients and a central server. Each client k has access
to an unlabeled local dataset Dy, modeled as samples from
a client-specific data distribution py(x):

Dy = {xI}") ~ pr(x), (D

where nj, denotes the number of samples in Dj. The global
objective in FUL can be formulated as:

K
mein kz_l Pk]Exwpk(x) [ﬁk (9, X)} 5 (2)
where Py is the probability of drawing a data from client k,
and L(-) denotes the local unsupervised loss of client .

Self-Supervised Representation Learning aims to learn

meaningful representations that capture the underlying

structure of data. A typical framework consists of the fol-
lowing components:

* Encoder f(-): Maps (augmented) input data x ~ 7 (x)
into a representation h = f(x) € R%, where d is the hid-
den dimension. It is common to use a deep neural network
(e.g., ResNet50) as the encoder.

* Projector g(-): Transforms the representation h into an
embedding z = g(h) € R%. The training loss function is
usually applied on this embedding space, and the projec-
tor is often a small network such as a multilayer percep-
tron.

A fundamental principle in self-supervised representa-
tion learning is that similar samples should have similar rep-
resentations. In other words, representations should be in-
variant to minor variations in input data. This is typically
achieved by aligning the representations of two augmented
versions of the same image (referred to as a positive pair)
using the following alignment loss:

L‘align = ]Exwp(x),i,i+NT(x) | ‘Z - Z+||§7 (3)

where x,xT ~ T(x) denotes two independent augmen-
tations of the same sample x and z = g(f(X)),z" =
g(f(x™)) are the corresponding embeddings.

Although aligning positive pairs encourages similarity, it
can lead to a degenerate collapse where all representations
converge to a single point. To circumvent this, Wang and
Isola [31] introduces a uniformity objective to ensure that
features are evenly dispersed on the unit hypersphere. This
uniformity is often measured using the log of the average
Gaussian potential [4]:

Cuniform = 10g E iid [e_tl |7 =21 \%] (4)

z;,2; ~p(z)

where p(z) is the distribution of embeddings obtained by

mapping data samples through the encoder f and projector
g and t is the temperature hyperparameter.

3. Methodology

In this section, we introduce Soft Separation and Distilla-
tion (SSD), a novel approach designed to enhance represen-
tation uniformity in federated learning (FL). We first ana-
lyze the limitations of uniformity in non-IID FL settings,
then propose dimension-scaled regularization to softly sep-
arate client features, and finally introduce projector distilla-
tion to effectively transfer improved embedding uniformity
to the representations.

Limited Inter-Client Uniformity of FL. Uniformity is a
critical metric in representation learning [6, 30, 31], where
higher uniformity indicates better preservation of informa-
tion in the learned representations. In centralized train-
ing, jointly optimizing alignment loss Lyjig, and uniformity
loss Luniform yields high-quality representations. However,
the distributed nature of FL introduces a fundamental chal-
lenge to uniformity optimization. Specifically, the unifor-
mity metric can be decomposed into intra-client and inter-
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In federated learning, each client ¢ optimizes its local
loss function using samples drawn from its own local dis-
tribution p;, which means that only the intra-client term
in the above equation is explicitly optimized. In a homo-
geneous setting, when client distributions are similar (i.e.,
p; /= pj;), optimizing intra-client uniformity naturally pro-
motes good inter-client uniformity. However, in non-IID
settings where client distributions differ significantly, opti-
mizing only intra-client uniformity does not guarantee good
inter-client uniformity, potentially limiting the quality of the
globally aggregated model. The core challenge in enhanc-
ing inter-client uniformity lies in the federated learning con-
straint that the server has no access to raw client data or
embeddings, making it impossible to directly impose a loss
function that operates across different clients.

Dimension-Scaled Regularization (DSR). To address the
inter-client uniformity challenge, we propose Dimension-
Scaled Regularization (DSR), which improves global uni-
formity by encouraging client embeddings to spread in dif-
ferent directions of the representation space. This approach
effectively increases the separation between clients without
enforcing rigid boundaries that might distort the intrinsic
data structure.

For each client k, we define a dimension-scaling vector
d; € R? where d is the dimensionality of the embedding
space. This vector applies selective scaling to specific di-

mensions, with some dimensions scaled by a factor o # 1
in a client-specific manner:

«a, ifie S
diy = .
1, otherwise,

(6)

where Sy, is a set of dimensions uniquely assigned to
client k, ensuring that the scaled dimensions are non-
overlapping across clients (i.e., S; N'S; = 0 for i # j).
The size of each set Sy, is approximately |d/K |, where K
is the number of clients.

We then regularize each client’s embeddings by encour-
aging them to move toward their dimension-scaled versions
through the following loss:

‘C]'IgSR = EZNPk “|Z - stopgrad(z © dk) ” ] (7

where © represents element-wise multiplication, and
stopgrad(-) prevents gradient flow through the scaled tar-
get, ensuring that we pull the original embedding toward
the scaled version rather than vice versa.

To understand why DSR enhances inter-client unifor-
mity, we can analyze its effect on the representation dis-
tribution. When a vector z is scaled along specific dimen-
sions by a factor « > 1 and then normalized to the unit
hypersphere, the resulting vector shifts toward those scaled
dimensions. By assigning different scaling dimensions to
each client, DSR effectively encourages client representa-
tions to occupy different regions of the unit hypersphere, as
illustrated in Figure 5. Mathematically, if clients ¢ and j
have scaling vectors d; and d; with non-overlapping scaled
dimensions, their optimized embeddings will tend to have a
smaller dot product:

]Ez'ini(z)aszpj(z) [ZIZJ] < By, z;~p(z) [Z;F ]7 3

where p(z) represents the distribution without DSR. This
reduced dot product corresponds to increased angular sepa-
ration, directly contributing to improved uniformity across
the global distribution.

Unlike a hard separation approach that would restrict
each client to entirely separate subspaces (which could
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Figure 5. Illustration of the effect of DSR. The left figure shows
the original data, where arrows indicate the transformation direc-
tion after applying DSR. The right figure presents the data af-
ter transformation. DSR increases separation and enhances inter-
client uniformity.

severely constrain representation capacity), our soft sepa-
ration allows clients to share most dimensions while gen-
tly pushing them toward different directions. This balanced
approach preserves the flexibility needed for effective repre-
sentation learning while significantly improving inter-client
uniformity.

An extreme example of fully separating embeddings
would be assigning each client a dedicated subspace (e.g., if
d = 500 and K = 10, each client could occupy 50 distinct
dimensions). Although this configuration maximizes inter-
client uniformity, it may disrupt the intrinsic data structure
and miss out on the collaborative benefits of FL. In con-
trast, our soft DSR loss encourages some degree of separa-
tion without completely isolating the clients’ embeddings.
We analyze this tradeoff further in Section 4.2.

Projector Distillation (PD). While DSR effectively en-
hances uniformity at the embedding level, we observe that
this improvement may not fully transfer to the representa-
tion level. This discrepancy occurs because the projector
g(+) placed between the encoder f(-) and the loss func-
tion can absorb much of the optimization effect, as shown
in Figure 4. Although completely removing the projector

might seem like a direct solution, prior work [2, 9, 32] has
demonstrated that the projector plays a crucial role in sepa-
rating optimization objectives from feature representations,
thereby preventing overfitting to specific self-supervised
tasks and improving downstream performance.

To bridge this gap, we introduce Projector Distillation
(PD), which explicitly aligns the encoder’s representations
with the projector’s embeddings:

L = Egrpex) [Dxe (o(h)|o(z))], )

where h = f(x) is the representation from the encoder,
z = g(h) is the embedding from the projector, o(-) denotes
the softmax function, and Dg;, is the Kullback-Leibler di-
vergence.

This distillation mechanism encourages the encoder to
internalize the beneficial structure learned in the embed-
ding space, effectively transferring the improved uniformity
from embeddings to representations. By minimizing the
KL divergence between these distributions, we ensure that
the uniformity improvements achieved through DSR are re-
flected in the representations used for downstream tasks.

3.1. Overview of Training Pipeline

The complete SSD algorithm is outlined in Algorithm 1,
with our key design components highlighted in red. The
server initially assigns unique weight vectors to all clients
for dimension-scaled regularization. During local training,
each client optimizes a combination of the standard align-
ment and uniformity losses for self-supervised learning,
augmented with our DSR and PD terms. The local train-
ing objective for each client k is formulated as:

‘Ck = ‘Cz]flign + ﬁ‘cﬁniform + ’Y‘Cl’;SR + 6‘C§islillv (10)
where 3, 7y, and § are hyperparameters that balance the con-
tribution of each loss term.

After local training, clients upload their updated mod-
els to the server, which aggregates them using standard



Algorithm 1: Soft Separation and Distillation (SSD)
Input: communication rounds 7', local epochs F,
number of clients /', dataset
D = Uge[k)Dr, augmentation function 77(-)
Output: Final global encoder ng
1 Server:

2 | [Initialize global encoder f§ and projector g9;
3 Assign weight vector {d, } [k for all clients;
4 fort =0toT — 1do

5 S; < (randomly select a set of clients);

6 for each client k € S in parallel do

7 | SR SR Client(f2, gb, dp);

8 end

9 // Model aggregation;

10 for each parameter 6 in f, g do

1 |0 3 g, wef R

12 end
13 end
14 | return f1;

[
wm

Client (f}, g}, dg):

16 // Initialize local models;

7| fhg—gh

18 for each local epoch e = 0to E — 1 do

19 for each batch {x;};” € Dy do

20 // Data augmentation;

21 Xi, X =T(x:), T(x:) 3

2 /I Get representations and embeddings;
23 h; hi = f(%:), f(%])

2 z;, 2] = g(hi),g(hf):

25 /I Optimize model using combined loss;
26 Update f, g by minimizing £* (Eq (10));
27 end

28 end

29 return f, g // Model upload;

30 return

federated averaging [24]: 01 = 3~ s, wrf®F) where
W = 3 [{"1 o represents the aggregation weight based on
the client’s data size.

Importantly, our method preserves privacy since it re-
quires no sharing of raw data. The only additional com-
munication is the initial weight vectors {dj, }£_,, which are
lightweight and contain no sensitive information. The com-
putational overhead of SSD is minimal, making it highly
practical for real-world federated learning deployments.

4. Experiments

Datasets. We evaluate our approach on CIFAR-10 and
CIFAR-100, which contain 50K training images and 10K
testing images, with 10 and 100 classes, respectively. Fol-

lowing prior work [22, 37], we simulate non-IID data across
K clients using a Dirichlet prior Dir(a), where a smaller c
indicates a higher degree of data heterogeneity. We conduct
experiments in two federated learning settings: cross-silo
(K = 10) with full participation and cross-device (X = 50)
with a participation rate of 0.2.

Evaluation Metrics. We evaluate our approach based on
downstream performance and representation quality. For
downstream performance, we follow prior work [10, 22,
36], using linear probing and fine-tuning with 1% and 10%
of the data. For representation quality, we assess unifor-
mity [6, 30, 31] as defined in Equation (4) and effective
rank [7, 27, 34] (see the definition in Appendix A.2).

Baselines. We compare our method against three categories
of baselines. (1) Adapting a centralized algorithm to the
federated setting: FedAlignUniform [31]. (2) FUL methods
that mitigate divergence from the global model: FedX [10]
and L-DAWA [25]. (3) FUL methods addressing dimen-
sional collapse in local clients: FedDecorr [28]. FedU2 [22]
incorporates modules that tackle both divergence control
and dimensional collapse.

Implementation Details. We follow prior work [22] for
image augmentations, training configurations, and model
architecture, using ResNet-18 [11] as the encoder and a
two-layer linear projector. The hyperparameters 3, ~y, and
¢ are set to 1.0, 1.0, and 0.1, respectively, and the scaling
factor v is set to 10.0. Further details are provided in Ap-
pendix A.1.

4.1. Main Results

Performance on different FL settings. Table | compares
the performance of various methods in cross-silo and cross-
device federated learning. SSD consistently achieves the
highest accuracy and excels in fine-tuning tasks. FedAlig-
nUniform, FedDecorr, and FedU2 are competitive but gen-
erally lag behind SSD, while FedX and L-DAWA—aimed
at ensuring global model consistency—perform the worst
across all settings. Although FedDecorr and FedU2 en-
hance intra-client uniformity (with FedU2 adding a con-
sistency module), they still trail SSD. By improving inter-
client uniformity, SSD underscores the importance of ad-
dressing inter-client variations in federated learning.

Representation quality. Figure | compares different meth-
ods based on effective rank [27] and uniformity [31], two
key metrics for representation quality. Among state-of-the-
art methods, FedX and L-DAWA, which emphasize global
model consistency, achieve strong representation quality. In
contrast, methods focusing on local uniformity, such as Fed-
Decorr and FedU2, exhibit lower effective rank and unifor-
mity, indicating that they fail to address global uniformity.
Our method, SSD, surpasses all other federated approaches,
achieving the highest effective rank and the best uniformity.



Table 1. Results on Cross-Silo and Cross-Device Settings. Accuracy (%) of linear probing (LP), fine-tuning (FT) 1%, and 10% labeled
data on CIFAR10 and CIFAR100 (ox = 0.1). The highest score is highlighted in bold, and the second-highest score is underlined.

CIFAR10 CIFAR100
Cross-Silo (K=10) Cross-Device (K=50) Cross-Silo (K=10) Cross-Device (K=50)
LP FT1% FT10% LP FT1% FT10% LP FT1% FT10% LP FT1% FT10%
FedAlignUniform [31] 80.84  69.99 81.00 71.28 5741 73777 5725 2897 4899  43.03 1637 36.64
FedX [10] 784  66.78 80.01 71.01 5691 7324  57.34  27.46 49.50  43.07 16.04 35.46
L-DAWA [25] 77.67 6594 79.34  67.65 53.75 7122 5690 27.08 49.57 4258 15.54 34.82
FedDecorr [28] 80.13  69.09 80.33 7149 58.19 7397 5725 2938 49.53 4474 17.67 36.68
FedU2 [22] 81.01 69.62 81.01  71.09 57.15 7421 5740 29.39 49.64 4290 16.08 35.48
SSD 81.32 70.74 81.67 71.83 57.77 74.61  57.38 29.57 49.87 4521 17.70 36.82

Table 2. Generalization on OOD datasets. Accuracy (%) of
linear probing, uniformity, and effective rank when trained on
CIFAR-100 and TinyImageNet-200, and evaluated on CIFAR-10.

CIRAR100 — CIFAR10 TinyImageNet — CIFAR10

LP  —Lunitorm(T) ERank (1) | LP —Luniform(T) ERank (1)
FedAlignUniform [31]  77.66 3.65 6699 | 79.86 371 7631
FedX [10] 78.02 373 84.88 | 79.87 3.76 93.48
L-DAWA [25] 77.46 371 8475 | 79.62 374 93.41
FedDecorr [28] 77.62 3.66 7420 | 79.79 372 84.93
FedU2 [22] 71.74 3.66 683 | 79.74 3.69 75.97
SSD 78.48 373 86.95 | 80.00 3.77 98.45

This demonstrates that SSD effectively enhances represen-
tation quality, outperforming existing methods.

Generalization on OOD datasets. Evaluating gener-
alization to out-of-distribution (OOD) datasets helps as-
sess whether models can learn transferable representations
that perform well beyond their training distribution. Ta-
ble 2 presents the generalization performance of differ-
ent methods, where models trained on CIFAR-100 and
TinyImageNet-200 are evaluated on CIFAR-10.

Among state-of-the-art methods, FedX, which exhibits
high representation quality but performs poorly in in-
distribution settings, achieves the best generalization in
OOD scenarios. However, our method, SSD, consistently
outperforms all baselines, achieving the highest accuracy
in both settings. SSD also demonstrates the best unifor-
mity [31] and effective rank [7], indicating superior fea-
ture representation quality. While FedAlignUniform, Fed-
Decorr, L-DAWA and FedU2 perform competitively, they
generally fall short of SSD, further reinforcing its effective-
ness in handling distribution shifts.

4.2. Analysis

Ablation Study. We provide the ablation study in Table 3.
It shows that adding projector distillation (PD) alone does
not provide noticeable improvements. In contrast, adding
dimension-scaled regularization (DSR) alone leads to slight
improvements in LP and FT 10%, but the uniformity en-
hancement is minimal. However, when combining both
DSR and PD (SSD), the method effectively transfers op-
timization benefits to representation quality, leading to a

Table 3. Ablation Study. PD alone has minimal impact on perfor-
mance. Adding DSR alone provides a slight improvement in both
performance and uniformity. Combining both DSR and PD leads
to a significant boost in uniformity and achieves the best perfor-
mance.

LP  FT1% FT10% —Lonitorm(T)
FedAlignUniform [31] 80.84 69.99  81.00 3.79
+PD 80.74 69.78  80.71 3.80
+DSR 8105 69.77  81.15 3.81
+DSR+PD (SSD) 8132 7074  81.67 3.84

significant uniformity improvement and achieving the best
overall performance.

Robustness of DSR. We evaluate our method from two per-
spectives: the scaled factor o and the selection of scaled
dimensions for each client. The scaled factor « influences
the overall discrepancy, while the selection of scaled dimen-
sions affects the direction each client is guided toward. To
assess robustness, each « is evaluated with three different
selections of scaled dimensions. As shown in Figure 6a,
our method maintains stable performance across different
« values, introducing minimal variation while consistently
outperforming FedAlignUniform. This demonstrates that
our approach effectively balances alignment and uniformity
without being overly sensitive to the choice of « or the spe-
cific dimension selection.

Soft vs. hard client separation. We examine the impact of
client feature separation on alignment, uniformity, and over-
all performance. Our intuition is that increasing separation
between clients enhances global uniformity. One way to en-
force this separation is by restricting each client to its own
subspace without sharing information with others. To illus-
trate the effects of such strict partitioning, we consider Hard
Separation and Distillation (HSD) as a baseline. As shown
in Figure 6b, while HSD achieves the highest uniformity,
it does so at the cost of severely reduced alignment, ulti-
mately leading to poor downstream performance. This per-
formance drop can be attributed to the disruption of intrinsic
feature structures. In contrast, our proposed SSD balances
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Figure 6. (a) Robustness of DSR across different scaled factors
«, where each « is tested with three different randomly selected
scaled dimensions. (b) Soft vs. hard separation. HSD achieves
the highest uniformity but at the cost of reduced alignment, result-
ing in poor overall performance.

Table 4. The Effect of the Projector. Without the projector, DSR
significantly improves uniformity and performance. Yet, the over-
all results remain inferior to those achieved with the projector.

Projector LP —Luniform (1)
FedAlignUniform X 73.16 3.72
+ DSR X 76.14 (+2.98)  3.77 (+0.05)
FedAlignUniform v 80.84 3.79
+DSR v 81.05 (+0.21)  3.81 (+0.02)

both alignment and uniformity, mitigating the drawbacks of
hard separation while enhancing uniformity, resulting in im-
proved overall performance.

Why not remove projector or apply loss on representa-
tions? A natural idea for addressing the limited transfer
of embedding-level loss optimization (in terms of represen-
tation uniformity) is to remove the projector or apply the
loss directly to the representations. However, prior work
[2, 9, 32] has demonstrated that the projector plays a crit-
ical role in preventing the encoder from overfitting on the
upstream task. Indeed, as shown in Table 4, removing the
projector and adding DSR does substantially improve uni-
formity and downstream performance, but these results still
lag behind those achieved when the projector is retained.
Therefore, it is crucial to develop a method that effectively
promotes uniformity while preserving the benefits offered
by the projector.

5. Related Work
5.1. Federated Learning with Non-IID Data

Federated learning (FL) enables collaborative model train-
ing across multiple clients without centralizing data. Since
client data distributions are typically non-IID, model con-
vergence and performance are challenging. FedAvg [24],
which aggregates local model updates using simple averag-

ing, is the foundational framework but suffers under hetero-
geneous data and imbalanced client participation.

To address these issues, various aggregation improve-
ments have been proposed. FedProx [21] reduces client
drift by adding a proximal term to limit local updates from
straying from the global model. SCAFFOLD [16] corrects
client drift using control variates to reduce variance in lo-
cal updates. MOON [19] improves representation consis-
tency with a contrastive loss. Other methods use globally
shared data to improve generalization; FedShare [35] aligns
client models using shared data, while FedDistill [13] dis-
tills knowledge from the global model to local models using
shared data.

5.2. Federated Unsupervised Learning

Federated Unsupervised Learning (FUL) combines feder-
ated learning with un-/self-supervised learning, primarily
addressing (1) non-IID data distribution and (2) represen-
tation collapse.

To handle non-IID data, FedCA [33] uses a shared dic-
tionary module for better aggregation but risks privacy leak-
age. FedU [36] reduces this risk by selectively upload-
ing the online network’s encoder and deciding predictor
updates based on divergence. FedEMA [37] extends this
with exponential moving average updates. FedX [10] adds
an alignment/contrastive term with the global model, while
Orchestra [23] preserves global structural consistency us-
ing global centroids. FedU?2 [22] ensures balanced updates
across clients for better alignment but does not guarantee
global representation uniformity under non-IID settings.

For representation collapse, FedDecorr [28] shows that
local clients suffer from dimensional collapse, which prop-
agates to the global model, and addresses it with a local
decorrelation loss. FedU?2 [22] encourages local represen-
tation uniformity by minimizing divergence with a spheri-
cal Gaussian. Our work extends this by showing that intra-
client uniformity alone is insufficient inter-client uniformity
must also be explicitly addressed.

6. Conclusion

We introduce Soft Separation & Distillation (SSD), a frame-
work designed to enhance representation quality by improv-
ing inter-client uniformity in federated learning. SSD con-
sists of a dimension-scaled regularization term that softly
separates client embeddings while preserving the intrinsic
data structure, and a projector distillation term that trans-
fers the optimization benefits of the projector to the encoder,
thereby improving representation quality. SSD achieves
state-of-the-art performance in both representation learning
and downstream tasks across various training and FL set-
tings. Our work highlights the importance of global repre-
sentation quality in federated unsupervised learning, open-
ing new directions for future research.
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A. Experimental Details
A.1. Training

We follow the image augmentations used in SimCLR [2]
and adopt ResNet-18 [11] as the encoder, coupled with a
two-layer linear projector. The model is trained for 5 epochs
over 100 communication rounds with a batch size of 128.
Both the encoder and projector produce output representa-
tions of 512 dimensions. Optimization is performed using
SGD [26] for both local and global models, with a learning
rate of 0.1. The hyperparameters /3, , d are set to 1.0, 1.0,
and 0.1, respectively. The scaling factor « is set to 10.

A.2. Effective Rank

Definition 1 (Effective Rank). Let matrix Z € R™ %4 with
Z =UXV 7 as its singular value decomposition, where 3
is a diagonal matrix with singular values 01 >--- >0 >0
with Q@ =min(N, d). The distribution of singular values is

defined as the normalized form p; = o;/ 25:1 |ok|- The
effective rank of the matrix Z, is defined as

ERank(Z) = exp (H (p1,p2,- - ,Pq)) (11)

where H (p1,pe2,---,pg) 1is the Shannon entropy
H (p1,p2,-+ ,pQ) = — Yy Pk 10g pi.

B. Additional Experiments

Distillation methods. We compare two projector distilla-
tion methods, MSE and KL divergence, as studied in [17].
The results indicate that both methods achieve similar per-
formance and consistently outperform the baseline.

Table 5. Distillation methods. Both MSE and KL divergence for
PD achieve comparable performance and uniformity.

LP  FT1% FT10% —Lunitorm(T)

FedAlignUniform [31] 80.84  69.99 81.00 3.79
SSD (MSE) 81.88 70.61 81.62 3.83
SSD (KL) 81.32  70.74 81.67 3.84
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