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Abstract— Performing in-hand, contact-rich, and long-
horizon dexterous manipulation remains an unsolved challenge
in robotics. Prior hand dexterity works have considered each
of these three challenges in isolation, yet do not combine
these skills into a single, complex task. To further test the
capabilities of dexterity, we propose drumming as a testbed
for dexterous manipulation. Drumming naturally integrates
all three challenges: it involves in-hand control for stabilizing
and adjusting the drumstick with the fingers, contact-rich
interaction through repeated striking of the drum surface, and
long-horizon coordination when switching between drums and
sustaining rhythmic play. Our key insight is leveraging contact-
targeted rewards to address in-hand contacts (finger—stick)
and external contacts (stick—drum). We instantiate this idea
with DexDrummer, a dexterous drumming policy learned via
reinforcement learning in simulation, with sim-to-real transfer
for real-world drumming. DexDrummer leverages minimal
hand priors to encourage stable in-hand contact; a trajectory
reward and contact curriculum to mitigate the challenges with
external contact; and a reactive grasp to support long-horizon
playing. In simulation, we show our policy can play two styles of
music: multi-drum, bimanual songs and challenging, technical
exercises that require increased dexterity. Across simulated
bimanual tasks, our dexterous, reactive policy outperforms
a fixed grasp policy by 1.87x across easy songs and 1.22x
across hard songs F1 scores. In real-world tasks, we show
song performance across a multi-drum setup. DexDrummer
is able to play our training song and its extended version
with an F1 score of 1.0. Project website and videos: https:
//sites.google.com/view/dexdrummer/

I. INTRODUCTION

Dexterous hand manipulation is an attractive problem
in robotics because it unlocks a broad set of real-world
tasks. Existing works have tackled challenges such as in-
hand object reorientation [1], [2], grasping [3], [4], [5], [6],
[7], [8], [9], and tool-based manipulation [10], all of which
require managing complex finger–object interactions. While
these works provide useful insights on dexterity, these studies
typically emphasize short-horizon tasks or narrow aspects of
dexterity in isolation.

In contrast, many real-world tasks such as assembly or
cooking require dexterous skills that combine in-hand con-
trol, robustness to external perturbations, and long-horizon
robustness. For example, assembling parts often involves
reorienting a fastener in the hand while applying force
to connect components, and cooking requires both holding
utensils stably and stirring against resistance.

Motivated by the need for a compelling testbed, we
propose drumming, a long-horizon, contact-rich dexterous
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Fig. 1. DexDrummer is a dexterous, drum-playing RL policy that
addresses the unified challenge of in-hand manipulation, external contacts,
and long-horizon control by leveraging a contact-targeted reward. Left: We
decouple the contact challenges into two categories: (1) in-hand contacts
which include fingertip contacts with the stick, a fulcrum incentive between
the thumb and index finger, and an arm energy penalty to incentivize finger-
biased control; and (2) external contacts such as a trajectory reward for
controlled drum-hitting motions, a reactive grasp reward to prevent stick
dropping, and a contact curriculum for gradually emphasizing drum playing.
Right: We demonstrate the efficacy of our drum playing policy both in
simulation and real environments.

manipulation task. Drumming inherently requires balancing
in-hand control – maintaining and adjusting the grasp of
the stick with fine finger control – and external contact –
forcefully and repeatedly striking drums. To play long songs,
this control becomes even more crucial: drumming requires a
policy robust to these contacts for extended periods of time.

To address the unified challenges of in-hand control,
external forces, and long-horizon robustness, our key insight
is to leverage reinforcement learning with contact-targeted
rewards. We denote two main categories of these rewards:
in-hand contact and external contact. Inspired by in-hand
manipulation and reorientation tasks which often require
fine-grained finger and object control, our in-hand contact
refers to finger and stick interactions, which requires fine-
grained dexterity. Present in hammering or other tool-based
manipulation tasks, external contact refers to the tool and
environment interaction (in this case stick and drum), which
includes initiating and reacting to the external forces. By
encouraging robustness across both types of contact, we
improve long-horizon control, which is essential to playing
songs that require repeated drum hits.

We propose DexDrummer, which uses contact-targeted
rewards to train a reinforcement learning policy in simula-
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tion, and demonstrates real-world drumming capabilities. To
address internal contacts over long horizons, we incorporate
finger-based rewards to encourage fine-grained manipulation
of the drum stick. To train a policy capable of both initiating
hits and responding to external contacts, we introduce a guid-
ing trajectory rewards, a contact curriculum and a reactive
grasp. In simulation, we show DexDrummer performance on
two styles of music: bimanual, multi-drum songs, and a uni-
drum technical exercise. We show sim-to-real transfer for
real-world drumming, showcasing DexDrummer’s capability
to perform dexterous, contact-rich control of the drum stick
across a long horizon.

In summary, our main contributions are threefold:
1) We introduce drumming as a challenging testbed for

dexterous manipulation, unifying the challenges of in-
hand manipulation, external contacts, and long-horizon
robustness.

2) We propose DexDrummer, a RL policy for drumming
that leverages contact-targeted rewards to study the
challenges of in-hand and external contacts combined
in a single complex task.

3) We showcase simulated drumming across six different
musical genres at two difficulty levels, with perfor-
mances ranging from 20 to 40 seconds, as well as
a high-speed exercise piece designed to test finger
dexterity. In addition, we evaluate our method on a
real-world drumming task using a cymbal and drum
pad setup.

II. RELATED WORK

Dexterous Manipulation Dexterous manipulation has
been a long-standing challenge in robotics. Many prior works
have focused on tasks falling under these broad categories:
in-hand manipulation, grasping, and post-grasp tool use.
First, in-hand manipulation typically consists of rotating or
translating objects with multi-finger control [11], [12], [13],
[14], [15]. Next, dexterous grasping is a useful skill for
automation or household tasks [4], [3], [16]. Then, grasping
an object, the robot may place the object (pick-and-place)
or use it as a tool, such as for drilling [17], pouring [10],
wiping [18], scissor cutting [19], and more. While these tasks
are challenging and important for researching dexterity, we
propose drumming, a task that requires both in-hand control,
post-grasp tool-based contact, and long-horizon robustness
for playing long songs.

To learn dexterous policies, many classical methods use
planning with precise models [20], [21], [22] for in-hand
manipulation, and propose grasps based on collision de-
tection or optimization-based methods [5], [23], [7], [24],
[6], [25]. Other works use sim-to-real training with rein-
forcement learning [26], [2], [1], [27] for in-hand tasks,
or use synthetically generated grasp datasets in simulation
with learning-based methods can leverage [28], [29], [8],
[4], [3], [16]. Imitation learning from human demonstrations
has been used for many dexterous applications [30], [31],
[10], [32], [9], [17]. However, to reduce the data burden on
designing simulated environments or teleoperating dexterous

Fig. 2. Drumming Environments. Our first simulation environment
includes bimanual, multi-drum song-playing. Our second environment in-
volves unimanual, uni-drum control for a high-speed technical exercise.
Finally, in the real-world, we play songs with a drum pad and cymbal.

data, many works retarget human data [33], [34], [19], which
may also utilize reinforcement learning in simulation [35],
[36], [37], [38], [39]. Following many prior works, we train
an RL policy in sim, which reduces the need to hire expert
drummers to generate demonstration data. We use simple
sim-to-real techniques, such as domain randomization, to
showcase real-world drumming.

Robot Drumming Robot drumming is an exciting subset
of research in robotic music-playing. Many prior works
design custom hardware for drum-playing [40], [41], [42],
[43]. Our project assumes a more general embodiment –
robot arm and hand – which requires learned dexterity to
hit the drums, instead of special hardware designs. Recent
works explore learning-based approaches to drumming, but
likewise use either custom embodiments [44], or directly
fix the stick to the embodiment in simulation [45], without
examples of real-world drumming. Like [45], we learn our
policy in simulation via reinforcement learning, but instead
of focusing on humanoid control, we assume a realistic stick-
holding embodiment, which allows sim-to-real transfer.

III. METHOD

We present DexDrummer, a bimanual, dexterous policy
that can play drums in simulated and real environments.
Following prior work [37], [2], we use reinforcement learn-
ing in simulation and use domain randomization to facilitate
transfer to real-world scenes. However, to achieve dexter-
ous movements under rich contact dynamics, we introduce
contact-targeted rewards to address both in-hand and external
contacts.

A. Problem Statement

We would like to learn a robot drumming policy via
reinforcement learning. Under this framework, our objective
is to learn a policy π(a|s) that maximizes the expected
discounted cumulative reward across trajectories. We assume
an environment with observation ot, rt per timestep t, and
discount factor γ.

In our drumming environment, we assume either a uni-
manual with nhand = 1, or bimanual environment with
nhand = 2, where nhand corresponds to the number of hands.
We detail the policy inputs in table II and reward functions
in table I.



TABLE I
REWARD FUNCTIONS AND CURRICULUM. ncontacts is the number of fingertip contacts, pthumb,pindex,pstick are positions, g(·) is a shaping function
from [46] mapping distances to [0, 1], xpalm, zpalm are palm orientation vectors, vright,vdown are world reference vectors, τarm joints, varm joints are arm
torques and velocities, and 1 denotes indicator functions for grasp. Contact Curr. refers to contact curriculum. For the exercise setting, which mainly

challenges finger dexterity, we disable the hand pose and grasping rewards, as the hand remains largely stable in this task.

Reward Formula Explanation Weight (Song) Weight (Exercise)

In-Hand Contact

Fingertip exp (−1/(ncontacts + ε)) Make fingertips contact the stick 1.0 1.0

Fulcrum g
(
(||pthumb − pstick||2 + ||pindex − pstick||2)/2

)
Position thumb and index finger to hold the fulcrum 0.0 1.0

Hand Pose (xpalm · vright + zpalm · vdown)/2 Maintain a stable palm orientation in the world frame 0.5 0.0

Arm ∥τarm joints∥+ ∥varm joints∥ Penalize arm movement to incentivize finger movement 0.0 -2.0

External Contact

Trajectory 1is grasped · g(||pstick − p̂stick||2) Guide the stick with a reference trajectory 1.5 2.0

Grasp 1is grasped Check grasp with the palm-stick distance. 1.0 0.0

Contact Curr. N/A Disable stick-drum contact for first N steps N/A ✓

Task

Drum Hit 1is stick hit drum · 1is hit window Hit drum according to music 1.0 1.0

B. Drum Environment

We create a simulated drum environment in the ManiSkill
framework [47] that consists of a bimanual robot setup and
a full drum set (snare, tom, ride, hi-hat, and crash). In
particular, this requires us to control and coordinate two arms
and hands under a single policy, that can simultaneously play
different drums.

We identify three main dexterous challenges in our drum
environment. First, the robot must maintain in-hand contact
to orient and grasp the stick firmly while performing. Second,
the act of hitting each drum requires responding to external
contacts. Third, we require long-horizon control to move
between drums and respond robustly to in-hand and external
contacts.

C. Reward Design

To address the different challenges in the drumming task,
we propose reward design to guide policy learning. We
categorize these rewards into 3 categories: (1) In-Hand
Contact Rewards for finger—stick interaction (2) External
Contact Rewards for stick—drum interaction and (3) Task
Rewards for drum-playing.

In-Hand Contact Rewards In-hand control for the drum
stick is paramount to drum playing. To enable this, we incor-
porate rewards targeting in-hand contact. First, we encourage
finger-stick contact through a fingertip contact reward, a
general reward function used in prior work [18] for finger-
object interactions. Next, following human drum priors, we
introduce the fulcrum reward, which specifically encourages
the thumb and index finger to grasp the “fulcrum,” the center
of the drum stick, following human priors in drumming. This
further enhances finger-stick contact based on drumming
priors. The fingertip contact reward encourages the fingers to
successfully touch and grasp the object, which in this case,
allows us to hold and manipulate the stick.

Moreover, unlike works with a fixed hand, drumming
requires both arm and hand control, and we propose two
rewards to further encourage in-hand contact in this arm and
hand system. This is important, as arm control can either
complicate or facilitate hand control. For example, if the arm
moves excessively or to unnatural positions, in-hand contact
may be difficult to maintain, but synergistic hand and arm
movements may make in-hand stick control much easier. To
address this issue, we design two complementary rewards.
A hand-pose reward encourages the palm to face the drum
set (left palm facing right and vice versa), guiding the arm
to move to positions where the hand can better manipulate
the stick. Next, we propose an arm penalty constraint, which
reduces excessive arm movements, making in-hand contact
more natural. This prevents the agent from manipulating the
stick with arm movements, incentivizing the agent to develop
fine-grained finger control. Energy minimization has been
widely used in locomotion [48], [49], [50] to induce diverse
gaits, and here, we adapt it for in-hand contact with the stick.

External Contact Rewards To address external contact,
we divide the challenges into two stages: (1) initiating
contact and (2) maintaining long-horizon contact. We address
the first with a trajectory reward and contact curriculum, and
we address the second with a reactive grasp reward.

First, we would like our policy to successfully initiate
external contact between the stick and drum. To achieve
this, we apply a trajectory reward, which explicitly guides
the speed and motion, hence guiding precise control of
the contact force. In our case, we pre-compute the desired
trajectories of the drumstick tip and end by modeling drum
hits with a sinusoidal wave and interpolating between drum
positions across hits. This approach is inspired by prior work
on high-level trajectory planning and low-level control [18],
[51], [39], [37]. While this reward guides the hitting motion
of the stick, the reward by itself is often insufficient to learn



TABLE II
OBSERVATION SPACE. L denotes lookahead horizon, and nhand is 1 for

unimanual and 2 for bimanual.

Observation Dimension

Arm Proprioception 7× nhand
Hand Proprioception 20× nhand

Stick Head Proprioception 3× nhand
Stick Tail Proprioception 3× nhand
Trajectory Plan: Stick Head 3× nhand × L
Trajectory Plan: Stick Tail 3× nhand × L

Stick is Grasped 1× nhand
Previously Played Drum 7 (discrete)
Next Drum to Play 7 (discrete)
Time Before Next Drum Hit 1

how to properly hit the drum. Specifically, during learning,
the stick often rests on the drumhead, which often blocks the
exploratory finger motions necessary for controlling the stick.
To address this issue, we introduce a contact curriculum.
Initially, contact between the stick and the drum is disabled,
allowing the agent to practice trajectory following in free
space while following the trajectory reward. Contact is later
reintroduced, enabling the policy to more effectively initiate
drum hits. This curriculum helps the policy learn to initiate
external contact, as we decompose the problem into first
following a motion, and then learning reactive behaviors to
continue following the trajectory with the external forces.
This curriculum shares similarities with DexMachina [52],
which uses virtual object controllers to prevent early failures
caused by gravity. In contrast, our curriculum targets contact-
related randomness – a more challenging source of instability
– and is simpler, requiring no modifications to object assets.

Lastly, we would like to repeatedly initiate external con-
tacts for a long horizon. Notably, these external contacts
can make in-hand control of the stick unstable. Thus, to
enforce in-hand contact with the stick during external contact
between the stick and drum, we propose a reactive grasp
reward, as it adapts to dynamic interactions and provides
stability across extended sequences of drum hits. Reward
details are included in table I.

Task Rewards Similar to prior works [45], we add a
sparse hit reward to check whether the drum is hit at a
specified time.

IV. EXPERIMENTS

We seek to answer the following questions:
1) Is dexterity essential for achieving robust long-horizon

drumming? Can we learn such a dexterous policy?
2) How can we enable finger-driven control for precise

drumming?
3) How do our design decisions affect dexterous control?
4) Can the learned behaviors transfer to real world?

A. Experimental Setup

1) Hardware Setup: We use a 7-DOF Franka Panda arm
and a 20-DOF Tesollo DG-5F hand in both simulated and

Fig. 3. Bimanual Song-Playing Rollout. We visualize 6 frames across a
single song trajectory, with lighter colored drums and cymbals correspond-
ing to a hit. Every song requires multiple combinations of drums to be hit.

real-world tasks (with bimanual setups in simulation). We run
policy inference at 20 Hz, and we use a PID joint position
controller that runs at 100 Hz.

We showcase real-world drumming with a unimanual,
drum pad and cymbal setup. We create a digital twin of the
real world by matching the drum, cymbal, and stick positions
and sizes. We apply randomization to improve robustness
for sim-to-real. At each step, uncorrelated Gaussian noise
sampled from N (0, 0.052) is added independently to the
proprioception and stick positions in the observation space.
The stick’s friction coefficient is perturbed with noise drawn
from a uniform distribution U(−0.2, 0.2). In addition, control
gains are scaled by a random factor sampled from U(0.9, 1.1)
at environment initialization, and this factor is kept fixed for
each environment throughout training.

To track the stick proprioception, we paint the end of the
drumstick. We use color segmentation, depth readings from
a RealSense camera, camera intrinsics, and camera extrinsics
to project it into robot frame.

2) Policy Training: We train our policies with Proximal
Policy Optimization [53], running for 60M steps on bimanual
tasks and 40M steps on unimanual tasks. The training setup
uses a discount factor of γ = 0.8, a clipping parameter of
0.2, and 1024 parallel environments. We adopt generalized
advantage estimation (GAE) with λ = 0.9 and employ a 3-
layer MLP policy network with hidden dimensions of size
512.

3) Evaluation Metrics: For bimanual song playing, we
evaluate performance using two metrics: (1) the F1 score
for song performance, and (2) the stick-hold ratio, defined
as the fraction of time the stick remains held in hand over
the total duration, which reflects the effectiveness of in-hand
control. For dexterous fine control, we use (1) trajectory
error, measuring how accurately the policy follows fine-
grained trajectories, and (2) energy consumption, capturing
the overall efficiency of the system.

4) Drum Songs: Like prior works [46], [45], we specify
songs by importing MIDI files into the environment. MIDI
is a widely used representation that encodes instruments and
timing in a concise, discrete format. We obtain MIDI songs
from an open-access website1 . From this collection, we

1https://mididrumfiles.com/tag/midi-files/
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Easy: Two-drum, Repetitive Rhythm, Long-horizon Hard: Multi-drum, Dynamic Rhythm, Short-horizon

Fixed Reactive

Fig. 4. Results for Dexterous Song-Playing. Left: Reactive grasp outperforms fixed grasp by a large margin in long-horizon contacts. Right: For more
challenging songs requiring frequent drum-to-drum transitions, reactive grasp still improves performance, but with a smaller margin, primarily due to the
reduced action space of fixed grasp.
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Finger-driven vs. Arm-driven Ablating Contact Curriculum (Finger-Driven)

Arm-driven Finger-driven Finger-driven w/o Contact Curriculum

Fig. 5. Results for Finger-Driven Control. Left: As tempo (beats per minute) increases, trajectory error for finger-driven control decreases and the
gap to arm-driven control widens, showing the superior dexterity of finger-driven control. Energy consumption is also substantially lower compared to
arm-driven control. Right: Without contact-targeted rewards, finger-driven control struggles to manage contact interactions effectively.

select six different genres of music, and for each track, we
extract both an Easy and Hard segment. To ensure playability
for the robot policy, all songs are slowed down by a factor
of three.

The Easy tracks feature repetitive loops, which we evaluate
over 400 timesteps (20 sec) to test long-horizon control.
The Hard tracks require hitting multiple drums with dynamic
rhythms, and we evaluate these with 200 timesteps (10 sec).
All tracks are performed using a bimanual setup.

For our Finger-Driven Control experiment (Section IV-
C), we use an exercise that emphasizes finger dexterity by
playing a single drum at a very high speed of up to 240
beats per minute (i.e., 4 hits per second). We train with 100
timesteps in a uni-manual setup.

B. Dexterity for Bimanual Song Playing

In our first set of experiments, we evaluate the importance
of dexterity for long-horizon tool manipulation. For drum-
ming, grasping the drum stick and repeatedly hitting a drum
for extended periods of time likely necessitates reorientation
and adjustment of the drum stick. To test the effectiveness
of our dexterous policy, we compare Fixed Grasp, where the
finger joints are frozen after reaching an initial grasp of the

stick, to our method, Reactive Grasp, where the agent exerts
dexterous control of the stick.

We evaluate the F1 Score and Hold Duration of the stick.
The F1 Score represents how well the policy can play the
song, showing that DexDrummer can learn a successful dex-
terous drumming policy. The Hold Duration evaluates how
Fixed Grasp and Reactive Grasp are affected by slippage as
the robot continues to move and hit the drum stick.

In fig. 4, we present two setups: an easier scenario with a
repetitive loop but long horizon (left), and a more challenging
scenario with multiple drums, dynamic rhythm, but shorter
horizon (right). In the left case, the reactive grasp clearly
outperforms the fixed grasp in both song performance and
stick hold duration, highlighting the necessity of reactive,
closed-loop dexterous control for long-horizon contact. In the
right case, the reactive grasp still outperforms the fixed grasp,
but with a much smaller margin. This is mainly because the
fixed grasp only needs to learn arm motion within a lower-
dimensional action space, which makes it easier to handle
complex drum-to-drum transitions. The result shows a trade-
off between dexterity and learning complexity, making it an
interesting direction for balancing the two.



C. Finger-Driven Control

Next, we explore how to enable fine-grained, dexterous
motions instead of relying on unnatural, whole-arm move-
ments. Drumming can be attempted through arm movements
or dexterous finger movements, but the precise finger con-
trol can often be overshadowed by initial arm exploration
and movement. In this experiment, we evaluate how Dex-
Drummer guides dexterity, and whether this leads to better
performance of the song.

To evaluate dexterity, we choose an exercise that re-
quires fine-grained finger movements. This exercise requires
playing a single drum very rapidly, which is difficult for
arm movements to follow and motivates dexterous finger
control. To enable finger-driven control, we incorporate the
arm energy penalty and contact curriculum, with reward
terms listed in table I. The arm energy penalty limits arm
movement in favor of finger movements, and the contact
curriculum helps the finger-driven policy learn to handle
external contact. The arm-driven policy optimizes the same
reward terms, with the exception of the arm penalty and
contact curriculum.

For this task, we evaluate the F1 Score, Trajectory Error,
and Energy Consumption across a range of speeds for the ex-
ercise, denoted by Beats Per Minute. The F1 Score represents
how well the policy plays the song. The Trajectory Error
shows, more precisely, how well the drum stick can follow
the desired trajectory. In particular, because this song requires
greater rotation of the stick up and down, this captures how
well arm or finger driven movements are able to reproduce
this motion. Finally, high Energy Consumption implies extra,
unnecessary movements, which is less desirable due to safety
and sustainability concerns. We evaluate these metrics across
a range of Beats Per Minute (BPM) for our exercise. A higher
BPM implies quicker hits and less time in between hits, and
is thus more challenging.

As shown in fig. 5, finger-driven control outperforms
arm-driven control, particularly as the BPM increases. This
highlights the necessity of fingers for fine-grained, high-
speed motions, as arm-driven motion is unable to accurately
replicate the quick stick movements. Moreover, finger-driven
motion results in significantly lower energy consumption,
which is advantageous for practical deployment. Qualita-
tively, in fig. 6, we find finger-driven motions to look more
natural and human-like, whereas arm-driven motions are
clunky and dangerous.

The fig. 5 (right) investigates what enables this dexter-
ous finger movement. We ablate our finger-driven motion
policy by removing the contact curriculum. Across different
BPMs, removing the contact curriculum leads to much higher
trajectory errors, implying that the curriculum is necessary
to learn finger dexterity for following the stick trajectory.
An exception occurs at a very high tempo (240 BPM),
where the robot only needs to lift the stick slightly above
the drum before hitting it again. Here, the effect of the
contact curriculum is limited because the dexterous motion
is small and easier to learn. This is further exemplified

Fig. 6. Sample Rollouts for the Dexterous Exercise. For fast-playing
exercises, the arm-driven policy moves to unnatural positions, leading to
energy-intensive and potentially dangerous positions. Finger-driven control
without the contact curriculum is unable to effectively learn dexterous
control, whereas adding the contact curriculum leads to the most natural,
effective drum hits. The lighter-colored drum head denotes that the drum is
being hit by the stick.
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Fig. 7. Results for Real-world Unimanual Drum Playing. We denote
the cymbal as c and the drum pad as d. The short seen sequence used for
training is ccdd. The long seen sequence is ccccdddd, while the long unseen
sequence is ccddccdd. Open-loop replay achieves reasonable performance
but cannot adapt to real-world dynamics. Our policy is able to play unseen
sequences (e.g., d → c) by conditioning on the desired trajectory.

through the F1 scores, which shows a drastic gap when
the contact curriculum is not enabled, besides for the fastest
tempo (240 BPM). Qualitatively, in fig. 5, without the contact
curriculum, the stick often rests on the drum head, preventing
effective finger exploration. We hypothesize that because
finger movements are relatively small, they can easily be
canceled out by external contact.

D. Real-World Drumming

Finally, we show results on real-world drumming with
a drum pad and cymbal. We evaluate the effectiveness of
our sim-to-real policy across multiple songs in an open and
closed-loop setting, similar to [54]. First, we evaluate F1
performance on the seen song our reinforcement learning
agent is trained on. Then, we evaluate on an extended version
of the song, which should have hits and trajectories that are



Fig. 8. Real World Rollouts. We visualize part of one closed-loop
trajectory. The lighter colors for the cymbal and drum show when the robot
hits them with the stick, and the arrows visualize the direction the stick was
moving in. In this continuous rollout, we two cymbal hits and two drum
hits. Notably, for the cymbal, which is not fixed and can rotate around the
world vector, the robot strikes with a relatively loose grip (top). However,
after hitting the drum pad, which is stable, the hand adjusts and forms a
firmer grip (bottom), as shown by the movement of the index finger and
thumb.

seen in the train song. Lastly, our most difficult song not only
requires more hits than the train song, but it also includes
unseen drum transitions. This is to evaluate the generalization
of our policy to out-of-distribution songs. For our open-loop
setting, we directly run the policy in simulation and replay
actions, whereas for closed-loop song-playing, we run policy
inference based on real-world states.

In fig. 7, we find that our closed-loop policy consistently
outperforms the open-loop policy. This shows that closed-
loop control is essential for real-world drumming, as the
robot is able to react to stick movements to better play the
song. Our closed-loop policy is able to play both the train
song and an extended version of the train song with an F1
score of 1.0, showing that sim-to-real can enable effective
drum playing. Additionally, the closed-loop policy can play
songs with unseen drum transitions (e.g., from drum pad to
cymbal), which may be due to high-level trajectory guidance
that our policy is conditioned on table II.

In Fig. 8, we show a sample rollout from real-world drum
playing. Notably, we highlight that the dynamics of hitting
a cymbal and a drum pad differ: the cymbal is not fixed
and involves less contact, whereas the drum pad is fixed
and introduces more substantial contact. When striking the
cymbal, the grip remains relatively loose since the interac-
tion does not cause significant instability. In contrast, after
striking the drum pad, the grip becomes firmer to handle the
stronger contact. This adaptation shows the effectiveness of
the reactive grasp.

V. CONCLUSION

We introduced DexDrummer, a testbed for dexterous ma-
nipulation that unifies the challenges of in-hand control,
contact-rich interaction, and long-horizon tasks. To address
this entangled problem, we proposed two categories of
contact-targeted rewards: in-hand contact rewards, which
incorporate hand priors to stabilize movements and sustain

long-duration contact with the object, and external contact
rewards, which guide contact initiation, and reacting to
external perturbations across long horizons. We demonstrated
the effectiveness of our framework through bimanual song
playing and fine-grained control in simulation, as well as
unimanual multi-drum performance on the real robot. In
future work, we aim to extend these insights to broader
problems that involve interaction with in-hand objects and
the physical world.

Limitations and Future Work We are excited about
future directions for dexterous drumming. For one, Dex-
Drummer cannot play bimanual, multi-drum songs at human
speed, and we slow down our songs in order to make
it feasible. Future directions may explore how to play to
drum tracks in real-time. Similarly, current experiments test
performance for up to 400 timesteps, whereas real-world
songs are often 3-5 minutes (up to 6000 steps). Improving
speed, robustness, and control is paramount to improved song
performances.

For our real-world experiments, we currently only show a
uni-manual performance with two drums. Future work may
showcase bimanual dexterous drumming with a full drum set.
Furthermore, we do not incorporate sim-to-real techniques
besides domain randomization, and further research into
reducing the sim-to-real gap may lead to stronger song-
playing.

REFERENCES

[1] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,
B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas,
J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang, “Solving rubik’s cube with a robot
hand,” 2019. [Online]. Available: https://arxiv.org/abs/1910.07113

[2] J. Wang, Y. Yuan, H. Che, H. Qi, Y. Ma, J. Malik, and X. Wang,
“Lessons from learning to spin “pens”,” in CoRL, 2024.

[3] P. Li, T. Liu, Y. Li, Y. Geng, Y. Zhu, Y. Yang, and S. Huang,
“Gendexgrasp: Generalizable dexterous grasping,” arXiv preprint
arXiv:2210.00722, 2022.

[4] Y. Zhong, Q. Jiang, J. Yu, and Y. Ma, “Dexgrasp anything: Towards
universal robotic dexterous grasping with physics awareness,” arXiv
preprint arXiv:2503.08257, 2025.

[5] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic
grasping,” IEEE Robotics & Automation Magazine, vol. 11, no. 4, pp.
110–122, 2004.

[6] R. Wang, J. Zhang, J. Chen, Y. Xu, P. Li, T. Liu, and H. Wang,
“Dexgraspnet: A large-scale robotic dexterous grasp dataset for general
objects based on simulation,” arXiv preprint arXiv:2210.02697, 2022.

[7] S. Brahmbhatt, A. Handa, J. Hays, and D. Fox, “Contactgrasp: Func-
tional multi-finger grasp synthesis from contact,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 2386–2393.

[8] Y. Xu, W. Wan, J. Zhang, H. Liu, Z. Shan, H. Shen, R. Wang, H. Geng,
Y. Weng, J. Chen et al., “Unidexgrasp: Universal robotic dexterous
grasping via learning diverse proposal generation and goal-conditioned
policy,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 4737–4746.

[9] Y. Zhong, X. Huang, R. Li, C. Zhang, Z. Chen, T. Guan, F. Zeng,
K. N. Lui, Y. Ye, Y. Liang, Y. Yang, and Y. Chen, “Dexgraspvla:
A vision-language-action framework towards general dexterous
grasping,” 2025. [Online]. Available: https://arxiv.org/abs/2502.20900

[10] K. Shaw, Y. Li, J. Yang, M. K. Srirama, R. Liu, H. Xiong, R. Men-
donca, and D. Pathak, “Bimanual dexterity for complex tasks,” in 8th
Annual Conference on Robot Learning, 2024.

https://arxiv.org/abs/1910.07113
https://arxiv.org/abs/2502.20900


[11] A. Bhatt*, A. Sieler*, S. Puhlmann, and O. Brock, “Surprisingly
robust in-hand manipulation: An empirical study,” in Robotics:
Science and Systems XVII, ser. RSS2021. Robotics: Science
and Systems Foundation, Jul. 2021. [Online]. Available: http:
//dx.doi.org/10.15607/RSS.2021.XVII.089

[12] Y. Bai and C. K. Liu, “Dexterous manipulation using both palm and
fingers,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014, pp. 1560–1565.

[13] J. Yin, H. Qi, J. Malik, J. Pikul, M. Yim, and T. Hellebrekers,
“Learning in-hand translation using tactile skin with shear and normal
force sensing,” 2025. [Online]. Available: https://arxiv.org/abs/2407.
07885

[14] Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang, “Rotating
without seeing: Towards in-hand dexterity through touch,” 2023.
[Online]. Available: https://arxiv.org/abs/2303.10880

[15] H. Qi, B. Yi, S. Suresh, M. Lambeta, Y. Ma, R. Calandra, and
J. Malik, “General in-hand object rotation with vision and touch,”
2023. [Online]. Available: https://arxiv.org/abs/2309.09979

[16] T. G. W. Lum, A. H. Li, P. Culbertson, K. Srinivasan, A. D. Ames,
M. Schwager, and J. Bohg, “Get a grip: Multi-finger grasp evaluation
at scale enables robust sim-to-real transfer,” 2024. [Online]. Available:
https://arxiv.org/abs/2410.23701

[17] H.-S. Fang, B. Romero, Y. Xie, A. Hu, B.-R. Huang, J. Alvarez,
M. Kim, G. Margolis, K. Anbarasu, M. Tomizuka, E. Adelson,
and P. Agrawal, “Dexop: A device for robotic transfer of
dexterous human manipulation,” 2025. [Online]. Available: https:
//arxiv.org/abs/2509.04441

[18] V. de Bakker, J. Hejna, T. G. W. Lum, O. Celik, A. Taranovic,
D. Blessing, G. Neumann, J. Bohg, and D. Sadigh, “Scaffolding
dexterous manipulation with vision-language models,” 2025. [Online].
Available: https://arxiv.org/abs/2506.19212

[19] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and C. K.
Liu, “Dexcap: Scalable and portable mocap data collection
system for dexterous manipulation,” 2024. [Online]. Available:
https://arxiv.org/abs/2403.07788

[20] L. Han and J. C. Trinkle, “Dextrous manipulation by rolling and
finger gaiting,” in Proceedings. 1998 IEEE International Conference
on Robotics and Automation (Cat. No. 98CH36146), vol. 1. IEEE,
1998, pp. 730–735.

[21] Y. Bai and C. K. Liu, “Dexterous manipulation using both palm and
fingers,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2014, pp. 1560–1565.
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