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Abstract

Imitation learning has enabled robots to learn novel skills, yet its scalability is
limited by high supervision demands. To address this, we propose Zero-Shot
Text Behavior Retrieval, which leverages task descriptions and Vision Language
Models (VLMs) to retrieve task-relevant data from offline datasets in a zero-shot
manner, bypassing the need for expert data. Our approach uses text-guided object
detection and CLIP embedding-based retrieval to detect task success. Tested on
three simulated and one real-world task, it outperforms expert-dependent methods,
demonstrating strong generalizability and efficiently training policies without
additional metadata or demonstrations.

1 Introduction

In the realm of robotics, one of the ultimate goals is to empower robots to do versatile tasks across
different environments. In recent years, imitation learning has emerged as a promising approach,
achieving remarkable performance on diverse manipulation tasks. However, imitation learning
requires a great collection of expert demonstrations, which can be difficult to obtain in real-world
scenarios.

To address the limitation, prior works aim to enhance the sample efficiency for new tasks by leveraging
unlabeled offline data and a small amount of expert data. Such offline data include many task-agnostic
and sub-optimal data (Mees et al. [2022], Zhu et al. [2020]). One line of work focuses on learning
pre-trained visual representations for downstream control (Nair et al. [2022], Xiao et al. [2022]).
Despite the effectiveness of these approaches in utilizing unlabeled offline data, they do not make use
of the offline data during fine-tuning, potentially hindering the downstream performance. Another line
of approach aims to retrieve task-relevant data from the offline dataset (Du et al. [2023a], Nasiriany
et al. [2022]) and use it for learning downstream control. One limitation of prior works is the necessity
of expert data, which constrains generalizability to the real-world setting. Realizing the limitation,
we propose to leverage only task descriptions to retrieve task-relevant data from the offline dataset as
illustrated in Figure 4.

We propose Zero-Shot Text Behavior Retrieval, a method that retrieves task-relevant data with only
task descriptions and visual language models, the data is then used to train a policy with behavior
cloning. Our method is motivated by the recent success of visual language models, which can strongly
connect the relationship between visual and text inputs. Our pipeline begins by segmenting crucial
information of an image using text-guided object detection models. The cropped images are then
used to compute the similarity to pre-defined positive and negative prompts, which describe the
states of a successful and a failed task. If the positive prompt has a higher similarity score with the
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Figure 1: Illustration of our Text Behavior Retrieval framework

image, the instance is then added to the training data. Subsequently, the data is employed to train a
policy through behavior cloning. We evaluate on 3 simulated and 1 real-world task and show that our
method can outperform existing methods that rely on additional expert data. Our contribution can be
listed as follows:

1. We are the first work on text-conditioned behavior retrieval to the best of our knowledge.

2. Given any unlabeled dataset, our framework can be used to train the policy without any
other target environment’s metadata or demonstration.

2 Related Work

Vision Language Models (VLMs). Recently, vision language models have been intensively investi-
gated. These models are designed to intricately learn the correlations between vision and language,
enabling them to make accurate predictions even in zero-shot scenarios. Video-LLama (Zhang et al.
[2023]) and BLIP (Li et al. [2022]) are the recent open-source state-of-the-art on visual question
answering, demonstrating impressive capabilities in detailed image description. However, in our
experiments, we observed limitations in their ability to recognize complex robotics control. OWL-ViT
(Minderer et al. [2022]) and OWLv2 (Minderer et al. [2023]) are open-vocabulary object detection
networks trained on a variety of (image, text) pairs. In our work, we utilize them to extract crucial
information from the image. CLIP (Radford et al. [2021]) is a multi-modal vision and language
model. It can be used for image-text similarity and for zero-shot image classification. In our work,
we use it to compute the similarity between image and success/fail states.

VLMs for task generalization. In robotics research, there’s a growing trend to emulate the success of
Large Language Models (LLMs) by developing versatile, generalist control models for robots. These
models aim for zero-shot capabilities in diverse environments. To achieve this, there’s a convergence
of robotics control and Vision-Language Models (VLMs). For instance, Jang et al. [2022] created an
adaptive imitation learning system that learns from demonstrations and interventions, responding
to various forms of task-related information. Brohan et al. [2023] explored how VLMs trained
on extensive internet-scale data can enhance robotic control through direct integration, leading to
improved generalization and emergent semantic reasoning. Although these methods effectively utilize
unlabeled offline data, their potential is not fully exploited during fine-tuning, which could impact
downstream performance.

Large-Scale vision-language pretraining for task specification. The detection of success signals
is a crucial aspect of robotics research. A significant body of work has focused on training reward
models by utilizing knowledge derived from large-scale pretrained success detectors, as indicated in
Mahmoudieh et al. [2022]. Moreover, there has been an increasing trend to harness the extensive
pretrained knowledge from vision-language models for success detection or task specification. For
example, Du et al. [2023b] fine-tuned a large Vision-Language Model, Flamingo Alayrac et al. [2022],
using substantial data from manipulation tasks, aiming to extract success signals from pretrained
Visual Question Answering (VQA) models. Additionally, Cui et al. [2022] experimented with using
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similarity measures between embeddings of user-specified goals and robot observations for goal
selection and policy learning.

Unlike previous studies that primarily employed vision-language models for reward modeling or as
success detectors, our work diverges by focusing on the use of these models for filtering robot data.
Remarkably, we aim to achieve this without the need for additional pretraining, setting our approach
apart from the conventional methodologies in the field.

Behavior Retrieval. Recently, some prior works have focused on retrieval from offline datasets
in imitation learning. Nasiriany et al. [2022] proposed to learn skills from the offline dataset and
subsequently learn a policy for the target task that invokes these learned skills. Du et al. [2023a]
aims to retrieve task-relevant data from the offline dataset using a small amount of expert data. The
retrieved state-action tuples are then used to learn low-level control policy. Different from prior
works, we do not use expert demonstrations for retrieval. Instead, we use task descriptions and VLMs
to retrieve relevant demonstrations from the offline dataset.

3 Method

3.1 Problem Formulation

The problem setting in Behavior Retrieval involves learning a target task from a limited amount of
task-specific expert data (Dt) and a larger amount of sub-optimal, unlabeled data (Dprior). Both
datasets share a state space S and an action space A. Instead of the standard approach, where models
are pre-trained on Dprior and fine-tuned on Dt, Behavior Retrieval first learns a similarity metric for
(s, a) pairs from Dprior. Subsequently, given Dt, this metric is used to retrieve relevant (s, a) pairs
from Dprior, and finally, πt is trained on the combined dataset of Dt and the retrieved data using
imitation learning. From the work of Du et al. [2023a], the behavior retrieval method outperform the
standard fine-tuning method.

From a high-level perspective, the retrieval process in previous work (Du et al. [2023a]) employs an
auto-encoder to compress state information, such as images, into low-dimensional embeddings. The
similarity of embeddings from Dt and Dprior is then computed to determine whether an instance in
Dprior is relevant to the target task. During the training of imitation learning, expert data and relevant
data, denoted as Dret, are combined as training data, as illustrated in Figure 3.

In the next section, we introduce a method that doesn’t require environment information and expert
data. Using a text prompt, we leverage text vision models to retrieve relevant data. This approach
doesn’t necessitate fine-tuning, and the zero-shot method can be generalized to various tasks.

3.2 Text Behavior Retrieval

Figure 2: Zero-shot text behavior retrieval
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Figure 3: Behavior retrieval from Du et al. [2023a]

The pipeline of our approach is depicted in Figure 2. The method comprises three stages.

3.2.1 Object Segmentation

In the first stage, we employ text-guided object detection models, OWL-ViT (Minderer et al. [2022])
and OWLv2 (Minderer et al. [2023]), to segment the relevant part of the image crucial to the target
task. For instance, in the NutAssembly task, the model captures the portion of the image determining
the success of the demonstration (we prompt the model with "wooden peg). The image is then
cropped, retaining only the essential part for further processing. If the model fails to detect any
task-related object, the instance is considered failed and is not used for training the imitation learning
model.

3.2.2 Retrieval Process

The second stage involves the main retrieval process. For each task, we compute the similarity
of CLIP embeddings of the image with a pair of positive and negative text prompts. The positive
prompt describes the successful scenario, and the negative prompt describes failure. For example,
in the NutAssembly case, we have prompts "wooden peg" and "square on wooden peg." The CLIP
embeddings of the cropped image and the two text prompts are compared. If the positive prompt has
a higher similarity score with the image, the instance is considered a success, and vice versa. The
CLIP similarity score helps retrieve relevant data for the subsequent step.

3.2.3 Imitation Learning

Following previous work, we train the agent to imitate Dret with a behavior cloning loss. Specifically,
we train

min
ψ

E(s,a)∼Dret
[−log πψ(a|s)] (1)

We encode the observation modalities separately before combining them into a shared state embedding
for the policy. Using an LSTM architecture for the policy allows for object permanence amidst
occlusion and the observation of features like object velocity. The policy outputs parameters to
a Gaussian mixture model (GMM), and the final actions are chosen by sampling from the GMM,
enabling better modeling of multi-modal behavior often present in large multi-task datasets.

4 Experiments

4.1 Datasets

Following the method from Du et al. [2023a], we build three different environments, CanPick,
NutAssembly, and Office and gather trajectories from them as Dprior.
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CanPick. In this RoboSuite environment, the task is for a simulated robot to pick and place a coke
can from one bin to another. We use the same trajectories as Du et al. [2023a], which contains a mix
of 400 human-collected demos where half complete the task and half fail by randomly throwing the
can out of the bin.

NutAssembly. The modified RoboSuite task is for a simulated robot to pick and insert a square into
the right side peg. We collect a mix of 400 machine-generated demos where half complete the task
and, in the other half, the robot puts the square onto the wrong (left) peg.

Office The third task is for a simulated robot in an office environment to pick an eraser and place it
into a specified tray. We collect 1200 machine-generated demos where half complete the task and, in
the other half, the robot fails to grasp the eraser and drop it into the tray. As for text inputs to object
detection and CLIP models, we have tested many kinds of prompt and use Table descriptions as our
final inputs.

Figure 4: Illustration of our testing environments

4.2 Experimental Settings

Text-to-image object detection. We test SOTA models Owl-V1 and Owl-V2 to find the most
important area for each task. Given that Owl-V2 was trained on larger and more realistic datasets, it
may not be able to detect simulated objects which tend to lack surface details and have low resolution.
We set the confidence threshold to 0.1 for Owl-V1 and 0 for Owl-V2 to enhance their generalization.

Table 1: Prompts for models

CanPick NutAssembly Office

CLIP Success dark drawer with a red can wooden square nut on wooden rod a blue object in the white tray
Failed dark drawer wooden rod a pure white tray

Object Detection dark drawer wooden peg white tray

Imitation Learning. Based on the difficulty of tasks, we train the agents with 9000, 800, 5500
epochs for CanPick, NutAssembly, and Office respectively. After that, we evaluate the agents with
Success Rate on 100 trials. For better comparison, we build two baselines All and Success Only,
where All takes all of the trajectories, including failed ones, as the input and Success Only takes only
successful trajectories. These two settings can be regarded as the bottom and top line. Also, we have
reproduced the settings from Du et al. [2023a] to compare them with our methods.

4.3 Results and Analysis

Table 2 summarizes our results* on CanPick, NutAssembly, and Office. Our method can significantly
outperform baselines on both retrieval and behavior cloning. In the NutAssembly task, our method

*In early CLIP experiments, we fed the whole image instead of classifying it as a failure when no object was
detected. Therefore, the reproduced result of NutAssembly may slightly differ from the one we reported.
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Table 2: Main Results

NutAssembly CanPick Office
Retrieval Accuracy Success Rate Retrieval Accuracy Success Rate Retrieval Accuracy Success Rate

All 50.00% 55.00% 50.00% 47.00% 58.00% 28.00%
Behavior retrieval - 59.00% - 52.00% - 50.00%
CLIP+Owlv1 (ours) 86.00% 69.00% 100.00% 94.00% 95.66% 92.00%
CLIP+Owlv2 (ours) 84.50% 72.00% 100.00% 94.00% 96.91% 83.00%

Success Only 100.00% 79.00% 100.00% 94.00% 100.00% 100.00%

shows an improvement of 13% in IL success rate. For the CanPick task, our method can reach optimal
results. In the Office task, our method demonstrates a remarkable improvement of 42% in IL success
rate.

It’s worth noting that the retrieval results of Behavior Retrieval are not reported, since its retrieval is
conducted on (state, action) units, while our methods retrieve the entire trajectory.

4.4 Experiments On Noisy Offline Dataset

In practical scenarios, offline datasets often consist of multiple tasks. To verify our method’s ability
on noisy offline datasets, we manually combine NutAssembly, CanPick, and Office as a mixed offline
dataset. Our experiments on CanPick demonstrate the noisy level of the offline dataset does not
significantly impact our performance of retrieval and imitation learning.

Table 3: Results of CanPick on the integration of NutAssembly, CanPick, and Office

NutAssembly + CanPick + Office
Retrieval Accuracy Success Rate

All 20.00% 49.00%
CLIP+Owlv1 (ours) 98.20% 93.00%

4.5 Can Our Method Apply To Real World?

To assess our method’s applicability to real-world scenarios, we conducted retrieval experiments on a
real-world dataset, specifically a subset of the BC-Z dataset (Jang et al. [2022]) that includes 865
episodes and encompasses 21 tasks. In our experiment, we focused on retrieving the task of ’placing
the pepper in the ceramic cup’ from this dataset. The results, as detailed in Table 5, demonstrate that
our method maintains high retrieval accuracy even in complex and noisy settings.

Table 4: Results for BCZ Dataset Retrieval

Retrieval Accuracy F1 Score
All 6% 10%
CLIP+Owlv1 95% 64%

4.6 Ablation Study

In this section, we analyze two experiments, directly calculate similarity score without object
detection and using VQA models to retrieve success trajectories. The results from Table 5 show that
our methods outperform other methods. We hypothesize that VideoLLaMA was trained on standard
VQA datasets, and therefore forcing it to predict a robot arm complete a task or not in the simulated
environment is way out of domain. Similarly, since CLIP was trained on images that usually contain
single object, we need to crop image first to remove other irrelevant objects for CLIP to find the
relationship of text description and the image. These results prove each step from our methods is
crucial and reasonable.
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Table 5: Ablation study on NutAssembly Dataset Retrieval

Retrieval Accuracy
VideoLLaMA 42%
CLIP+whole image 50%
Ours 84.5%

5 Conclusion

In this report, we have introduced "Zero-shot Text Behavior Retrieval," a pioneering approach that
synergizes text-based guidance with vision-language models to redefine behavior retrieval in robotics.
Distinct from conventional methodologies that predominantly rely on expert demonstrations, our
method can adapt to any environment merely through text prompts. This integration enables the
efficient retrieval of pertinent behaviors within a zero-shot learning framework, markedly enhancing
the adaptability and scalability of robotic learning systems.

Our experiments, spanning simulated and real-world environments, have unequivocally demonstrated
the superior performance of our approach. "Zero-shot Text Behavior Retrieval" consistently outper-
formed all established baselines across various scenarios, underscoring its robustness and efficacy.
This remarkable performance illustrates the method’s capacity to generalize across diverse tasks and
environments, a notable leap over traditional imitation learning techniques.

The impact of our work on the field of robotics research is profound. By diminishing the dependency
on expert-generated data and expanding the range of learning sources, our method sets the stage
for more accessible, efficient, and flexible robotic systems. It exemplifies the potential of melding
language comprehension with visual perception in robotics, heralding a new era of autonomous
systems capable of learning and adapting in dynamic and varied settings. This research not only
advances the domain of imitation learning but also contributes significantly to the broader discourse
on the confluence of AI and robotics, with far-reaching implications across various industrial,
commercial, and academic spheres.
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